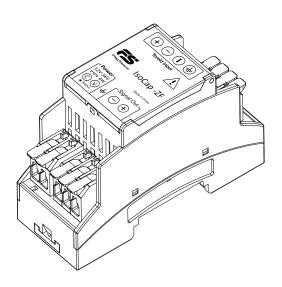


Features

Galvanic isolated
Multiple measurement ranges
High precision
Non-polarized power supply
Zero flux technology
DIN rail mounting

Advantages


5000V withstanding isolation Multiple ranges from ± 10 A to ± 2000 A Various voltage output options Accuracy up to $\pm 0.02\%$

Applications

EV and new energy testing
High precision current testing
Power semiconductor measurement

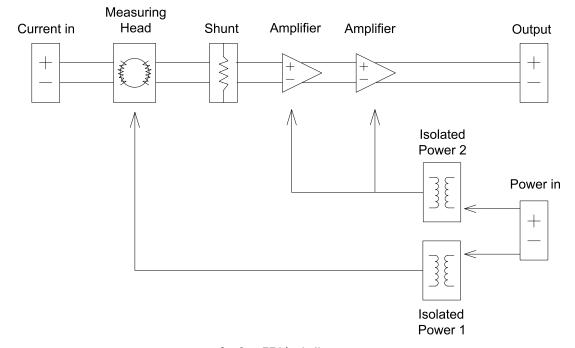
Description

IsoCap-ZF is a galvanic isolated current sensor that can measure current from ±10A to ±2000A, it consists

of two parts: measuring head and signal processing module. IsoCap-ZF has multiple measurement ranges selection, it can be customized for specific requirement. IsoCap-ZF is a non-contact current sensor, the tested current in the conductor passing through the aperture of the measuring head, and the signal processing module converts the output to $\pm 10V$.

Specifications

Electrical					
Parameter	Test conditions	Minimum	Typical values	Maximum	
Input ranges		±10A		±2000A	
Accuracy	@ 25°C		±0.02% of range or ±0.1% of range		
Nonlinear error				0.02%	
Maximum delay				1us	
Output offset voltage	@ 25°C	-1mV		1mV	
Output voltage			±5V differential pair or ±10V differential pair or customized		
Phase shift (@ 50Hz)	@ 25°C			0.01°	
Power supply voltage		19V	24V	36V	
Power supply power		4W			



Typical bandwidth of IsoCap-ZF								
±10A	±50A	±100A	±200A	±400A	±500A	±600A	±1000A	±2000A
DC-100kHZ(-3dB)		DC-80kHZ(-3dB)		DC-30KHz(-3dB)				

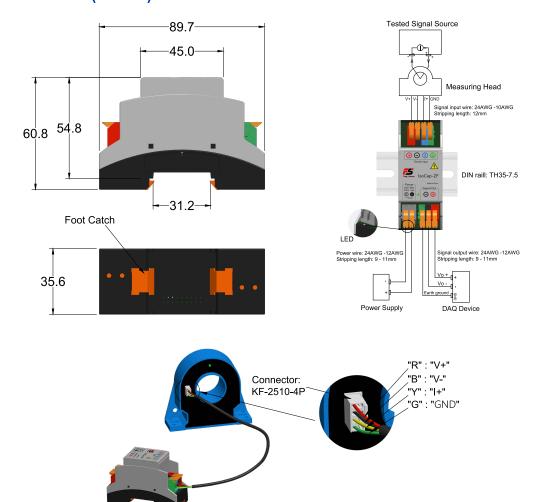
Insulation parameter				
Primary and secondary insulation voltage(1min)	±5kV			
Insulation voltage for transient(50us)	±10kV			

Environmental and mechanic	al characteristics
Operation temperature	-15°C ~ 70°C
Storage temperature	-25°C ~ 80°C
Mounting type	DIN rail mounting
Number of channels	1 channel
Hot swapping	Not supported

Block Diagram

IsoCap-ZF block diagram

The measuring head measures the input current values of conductor and outputs the corresponding current. Then, amplifier converts induced voltage on shunt to ±5V or ±10V differential voltage. The above diagram shows the signal processing in general.


Testing Setup

- 1. Connect measuring head and signal processing module.
- 2. Connect the output voltage of signal processing module to the DAQ/instrument, the ground must be well grounded.
- 3. Connect DC power supply to power it on.
- 4. The tested current conductor passes through the center hole of the measuring head, make sure the tested current is off before connecting. Positive current direction identified by an arrow on the top of housing.
- 5. Turn the tested current on.

Disassemble

Ensure the tested voltage source is turned off, then remove the tested voltage wire. Disconnect the sensor from power and remove the output and grounding wires.

Dimensions (in mm)

Zero Flux High Precision Current Sensor

Ordering Code

Product name	Input ranges	Output voltage	Accuracy
IsoCap-ZF	±10A ~ ±2000A	±5V or ±10V	±0.02%(A) or ±0.1%(B)

E.g. IsoCap-ZF-500-5-A (500: input range is $\pm 500A$, 5: output voltage is $\pm 5V$, A: accuracy of $\pm 0.02\%$ of range). If you have queries regarding the IsoCap-ZF or require specifications outside standard ranges, please do not hesitate to contact us.

Do not connect or disconnect sensor or test leads in operation.

To avoid fire or shock hazard, observe all ratings and markings on the product carefully.

If you suspect there is damage to this product, have it inspected by qualified service personnel.

Do not touch exposed connections and components in operation.

Do not operate in wet/damp conditions.

Do not operate in an explosive atmosphere.

Keep product surfaces clean and dry.

Warning

The service instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety contents prior to performing service.

page 4 of 4